Schizophrenia Research Forum - A Catalyst for Creative Thinking

DISC1: A Maestro of Adult Hippocampal Neurogenesis?

9 September 2007. The schizophrenia susceptibility gene candidate disrupted in schizophrenia 1 (DISC1) may function as a "master regulator" for integrating new neurons into the adult hippocampus, according to a study published online September 6 in Cell. By blocking DISC1 in neural progenitors in adult mice, a team led by investigators at the Johns Hopkins University School of Medicine produced significant alterations in neuronal morphology and positioning, as well as excitation properties.

Hippocampus is one of the major anatomical areas of interest in schizophrenia (see, e.g., Harrison et al., 2004), and these results might help to uncover mechanisms by which the disease negatively impairs memory and other functions subserved by the hippocampus. The study also raises the possibility that some of the hippocampal pathophysiology reported in schizophrenia has origins in later development or adulthood, and may be tractable to adult remediation (Newton and Duman, 2007).

There's always something happening in hippocampus
Until fairly recently, the idea that no new neurons are generated in the adult brain was a basic tenet of neuroscience, a principle that placed great constraints on possible treatments for neurodegenerative diseases and other brain disorders. Since the late 1990s, when the possibility of adult neurogenesis was proposed, this area of research has been unusually contentious. The dust has now settled somewhat, and a general consensus has emerged that while adult neurogenesis in the neocortex is highly unlikely, it is a defining feature of the hippocampus. Indeed, hippocampal neurogenesis now forms the basis for influential theories of depression and the therapeutic actions of antidepressant drugs (Santarelli et al., 2003).

Most studies of hippocampal neurogenesis have focused on cell proliferation and cell fate, and researchers have just begun to turn their attention to the question of how adult-born neurons complete the several migratory and morphological steps necessary for successful integration into existing neural circuits.

Accelerated development
Because DISC1 has been shown to promote neurite outgrowth and neuronal migration (Miyoshi et al., 2003; Kamiya et al., 2005; see SRF news story), and because its expression in the adult brain is restricted to the hippocampus, the team led by Hongjun Song and Guo-li Ming of the Johns Hopkins, and Bai Lu of the NIMH explored “the tantalizing possibility that DISC1 may play an important role in regulating the process of adult neurogenesis.” First author Xin Duan of Johns Hopkins and colleagues employed a “single-cell genetic” approach, in which an injected retroviral vector was used to infect mouse neural progenitor cells in the adult hippocampus with a short-hairpin RNA designed to tamp down expression of DISC1.

While DISC1 knockdown did not affect cell fate—over 80 percent of progenitor cells expressing the interfering RNA differentiated into neurons one week after injection, a rate comparable to controls—the researchers observed pronounced effects on cell morphology, migration, and physiology, as well as the overall integration of these new neurons into existing hippocampal circuits.

Duan and colleagues noted that the cell bodies of DISC1 knockdown neurons were much larger than those infected with a control shRNA. Moreover, while developing mouse dentate granule cells typically extend only one apical dendrite that later branches into a dendritic arbor, DISC1 knockdown neurons exhibited multiple primary dendrites, including basal dendrites. These additional dendrites were themselves quite complex; they were much longer and displayed significantly more branching than those seen in normal development.

The morphological alterations had functional consequences. In electrophysiological experiments performed 2 weeks after injection, DISC1 knockdown neurons fired many times more action potentials than controls, suggesting that these neurons had matured much faster than their counterparts.

In normal mice, almost all adult-born neurons remain in the inner two-thirds of the granule cell layer, but neurons in mice treated with shRNA migrated outside this region, some leaving the granule cell layer entirely to settle in the molecular layer.

Figure 1. In this detail from figure 2b of the paper, the green fluorescently labeled neurons were born in the adult hippocampal proliferative zone. The neurons on the left are behaving normally, stopping in the appropriate granule layer of the dentate gyrus. The green neuron on the right, in which DISC1 expression has been knocked down with RNA interference, has overshot the mark, ending up in the molecular layer. [Photo detail courtesy of Cell, from Duan and colleagues, 2007]

DISC1 knockdown neurons were precocious in their synapse formation, with numerous dendritic spines appearing 2 weeks after treatment, a full 2 weeks earlier than in control neurons. Again, these differences profoundly affected function: there was a 20-fold increase in GABAergic spontaneous synaptic currents in DISC1 knockdown cells. "Thus, regulation of DISC1 expression may alter sustained and synchronized firing, a notion with profound implications in cognitive brain function and schizophrenia," the authors write.

Finally, the researchers found evidence that NDEL1, identified in a number of studies as a partner in DISC1's developmental activities (see SRF news story), is also necessary for DISC1's regulation of adult neurogenesis.

Overall, the results paint a picture of greatly accelerated neural development when DISC1 is disrupted. The authors conclude that DISC1 is “a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in development, including adult neurogenesis.”

Reconciling with previous work

The suggestion by Duan and colleagues that DISC1 knockdown releases a regulatory brake to speed up neuronal process elaboration or migration would appear at first glance to contrast with in vitro work (e.g., Miyoshi et al., 2003) and the in vivo study by Sawa and colleagues, which showed impaired dendritic development and retarded migration in developing mouse neocortex when DISC1 expression was suppressed (Kamiya et al., 2005). But given the many differences between the embryonic and adult brain milieus, as well as between the migration patterns in developing neocortex and adult dentate gyrus, it may be the case that DISC1's activity has different end effects at these different settings. Indeed, Duan and colleagues confirmed some of the work of Kamiya and colleagues, reporting preliminary findings that DISC1 appears to spur both dendritic growth in vitro (in hippocampal cells) and migration (in neocortical areas) in early development in their in vivo model.

The findings by Duan and colleagues raise the intriguing possibility that some symptoms of schizophrenia, almost always a late adolescence or adult-onset disease, may be related to disruption of the tightly orchestrated hippocampal neurogenesis seen in the adult brain.—Peter Farley.

References:
Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu X, Yang C-H, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng H-J, Ming G, Lu B, Song H. Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007 Sep 21;130(6):1146-58. Epub 2007 Sep 6. Abstract

Comments on News and Primary Papers
Comment by:  Barbara K. Lipska
Submitted 9 September 2007
Posted 9 September 2007

Several recent studies on disruptions of the DISC1 gene in mice illustrate the great potential of genetic approaches to studying functions of putative schizophrenia susceptibility genes but also signal the complexity of the problem. An initial rationale for studying the effects of mutations in DISC1 came from the discovery of the chromosomal translocation, resulting in a breakpoint in the DISC1 gene that co-segregated with major mental illness in a Scottish family (reviewed by Porteous et al., 2006). These clinical findings were followed by a number of association studies, which reported that numerous SNPs across the gene were associated with schizophrenia and mood disorders and a variety of intermediate phenotypes, suggesting that other problems in the DISC1 gene may exist in other subjects/populations.

Recent animal models designed to mimic partial loss of DISC1 function suggested that DISC1 is necessary to support development of the cerebral cortex as its loss resulted in impaired neurite outgrowth and the spectrum of behavioral abnormalities characteristic of major mental disorders ( Kamiya et al., 2005; Koike et al., 2006; Clapcote et al., 2007; Hikida et al. 2007). Unexpectedly, however, the paper by Duan et al., 2007, is showing that DISC1 may also function as a brake and master regulator of neuronal development, and that its partial loss could lead to the opposite effects than previously described, i.e., dendritic overgrowth and accelerated synapse formation and faster maturation of newly generated neurons. In contrast to previous studies, they have used the DISC1 knockdown model achieved by RNA interference in a subpopulation of single cells of the dentate gyrus. Other emerging studies continue to reveal the highly complex nature of the DISC1 gene with multiple isoforms exhibiting different functions, perhaps depending on localization, timing, and interactions with a multitude of other genes’ products, some of which confer susceptibility to mental illness independent of DISC1. Similar molecular complexity has also emerged in other susceptibility genes for schizophrenia: GRM3 (Sartorius et al., 2006), NRG1 (Tan et al., 2007), and COMT (Tunbridge et al., 2007). With the growing knowledge about transcript complexity, it becomes increasingly clear that subtle disturbances of isoform(s) of susceptibility gene products and disruptions of intricate interactions between the susceptibility genes may account for the etiology of neuropsychiatric disorders. Research in animals will have a critical role in disentangling this web of interwoven genetic pathways.

View all comments by Barbara K. LipskaComment by:  Akira Sawa, SRF Advisor
Submitted 13 September 2007
Posted 13 September 2007

I am very glad that our colleagues at Johns Hopkins University have published a very intriguing paper in Cell, showing a novel role for DISC1 in adult hippocampus. This is very consistent with previous publications (Miyoshi et al., 2003; Kamiya et al., 2005; and others; reviewed by Ishizuka et al., 2006), and adds a new insight into a key role for DISC1 during neurodevelopment. In short, DISC1 is a very important regulator in various phases of neurodevelopment, which is reinforced in this study. Specifically, DISC1 is crucial for regulating neuronal migration and dendritic development—for acceleration in the developing cerebral cortex, and for braking in the adult hippocampus.

There is precedence for signaling molecules playing the same role in different contexts, with the resulting molecular activity going in different directions. For example, FOXO3 (a member of the Forkhead transcription factor family) plays a role in cell survival/death in a bidirectional manner (Brunet et al., 2004). FOXO3 endows cells with resistance to oxidative stress in some contexts, and induces apoptosis in other contexts. SIRT1 (known as a key modulator of organismal lifespan) deacetylates FOXO3 and tips FOXO3-dependent responses away from apoptosis and toward stress resistance. In analogy to FOXO3, context-dependent post-translational modifications, such as phosphorylation, may be an underlying mechanism for DISC1 to function in a bidirectional manner. Indeed, a collaborative team at Johns Hopkins, including Pletnikov's lab, Song's lab, and ours, has started exploring, in both cell and animal models, the molecular switch that makes DISC1's effects bidirectional.

References:

Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004 Mar 26;303(5666):2011-5. Abstract

View all comments by Akira SawaComment by:  Sharon Eastwood
Submitted 14 September 2007
Posted 14 September 2007

Recent findings, including the interactome study by Camargo et al., 2007, and this beautiful study by Duan and colleagues, implicate DISC1 (a leading candidate schizophrenia susceptibility gene) in synaptic function, consistent with prevailing ideas of the disorder as one of the synapse and connectivity (see Stephan et al., 2006). As we learn more about DISC1 and its protein partners, evidence demonstrating the importance of microtubules in the regulation of several neuronal processes (see Eastwood et al., 2006, for review) suggests that DISC1’s interactions with microtubule associated proteins (MAPs) may underpin its pathogenic influence.

DISC1 has been shown to bind to several MAPs (e.g., MAP1A, MIPT3) and other proteins important in regulating microtubule function (see Kamiya et al., 2005; Porteous et al., 2006). As a key component of the cell cytoskeleton, microtubules are involved in many cellular processes including mitosis, motility, vesicle transport, and morphology, and their dynamics are regulated by MAPs, which modulate microtubule polymerization, stability, and arrangement. Decreased microtubule stability in mutant mice for one MAP, stable tubule only polypeptide (STOP; MAP6), results in behavioral changes relevant to schizophrenia and altered synaptic protein expression (Andrieux et al., 2002; Eastwood et al., 2006), indicating the importance of microtubules in synaptic function and suggesting that they may be a molecular mechanism contributing to the pathogenesis of schizophrenia. Likewise, DISC1 mutant mice exhibit behavioral alterations characteristic of psychiatric disorders (e.g., Clapcote et al., 2007), and altered microtubule dynamics are thought to underlie perturbations in cerebral cortex development and neurite outgrowth caused by decreased DISC1 expression or that of a schizophrenia-associated DISC1 mutation (Kamiya et al., 2005).

Our interpretation of the possible functions of DISC1 has been complicated by the unexpected findings of Duan and colleagues that DISC1 downregulation during adult hippocampal neurogenesis leads to overextended neuronal migration and accelerated dendritic outgrowth and synaptic formation. In terms of neuronal positioning, they suggest that their results indicate that DISC1 may relay positional signals to the intracellular machinery, rather than directly mediate migration. In this way, decreased DISC1 expression may result in the mispositioning of newly formed neurons rather than a simple decrease or increase in their migratory distance. Of note, MAP1B, a neuron-specific MAP important in regulating microtubule stability and the crosstalk between microtubules and actin, is required for neurons to correctly respond to netrin 1 signaling during neuronal migration and axonal guidance (Del Rio et al., 2004), and DISC1 may function similarly during migration. Reconciling differences between the effect of decreased DISC1 expression upon neurite outgrowth during neurodevelopment and adult neurogenesis is more difficult, but could be due to differences in the complement of MAPs expressed by different neuronal populations at different times. Regardless, the results of Duan and colleagues have provided additional evidence implicating DISC1 in neuronal functions thought to go awry in schizophrenia. Further characterization of DISC1’s interactions with microtubules and MAPs may lead to a better understanding of the role of DISC1 in the pathogenesis of psychiatric disorders.

References:

Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory Faure S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D (2002). The suppression of brain cold-stable microtubules in mice induces synaptic deficits associated with neuroleptic-sensitive behavioural disorders. Genes Dev. 16: 2350-2364. Abstract

Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ, Brandon NJ (2007). Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 12: 74-86. Abstract

Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007). Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54: 387-402. Abstract

Del Rio, J.A., Gonzalez-Billault, C., Urena, J.M., Jimenez, E.M., Barallobre, M.J., Pascual, M., Pujadas, L., Simo, S., La Torre, A., Wandosell, F., Avila, J. and Soriano, E. (2004). MAP1B is required for netrin 1 signaling in neuronal migration and axonal guidance. Cur. Biol. 14: 840-850. Abstract

Eastwood SL, Lyon L, George L, Andrieux A, Job D, Harrison PJ (2006). Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice. J. Psychopharm. 21: 635-644. Abstract

Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross CA, Hatten ME, Nakajima K, Sawa A. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol. 2005 Dec;7(12):1167-78. Epub 2005 Nov 20. Erratum in: Nat Cell Biol. 2006 Jan;8(1):100. Abstract

Porteous DJ, Thomson P, Brandon NJ, Millar JK (2006). The genetics and biology of DISC1-an emerging role in psychosis and cognition. Biol. Psychiatry 60: 123-131. Abstract

Stephan KE, Baldeweg T, Friston KJ (2006). Synaptic plasticity and disconnection in schizophrenia. Biol. Psychiatry 59: 929-939. Abstract

View all comments by Sharon Eastwood

Comments on Related Papers


Related Paper: Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain.

Comment by:  Ben Pickard
Submitted 18 November 2007
Posted 18 November 2007

Adult Neurogenesis: Reading for the Curious and a Breakthrough in Human Brain Imaging
As Jane Austen might have said: “It is a truth universally acknowledged, that a biological process in possession of a good molecular definition, must be in want of a disease.” In this case, the process in question is adult neurogenesis: the generation of new neurons at the inner face of the dentate gyrus of the hippocampus. A recent Science paper forms the core of this commentary as the work described within has the potential to transform our understanding of the field in two ways (Manganas et al., 2007). Firstly, it offers the first real chance of making definitive links to disease by permitting study of the phenomenon in human subjects, both well and unwell. This will strengthen the currently inferred links to psychiatric and other conditions. Secondly, the paper highlights a previously unexplored class of molecules that appear to be biomarkers for, and perhaps critical participants in the function of, the neuronal precursor cells of the hippocampus.

It is only a decade or so since the replenishing pool of neurons in the adult subgranular zone of the hippocampal dentate gyrus was identified in the rodent. After a period of intense debate, a chemical marker, BrdU, which labels replicating DNA in the new neuronal precursors, and a set of immunocytochemical markers for differentiation stages have provided entirely convincing confirmation and definition of the neurogenesis process. For reviews on the subject, I have found these to be particularly helpful: Elder et al., 2006, a good general review; Grote and Hannan, 2007, a review featuring a more neurobiological/pharmacological take on the subject; Ehninger and Kempermann, 2007, a discussion of cell types including the possible astrocytic qualities of neural precursor cells; von Bohlen Und Halbach, 2007, for a detailed description of stage markers used to delineate the neuronal differentiation process; Gould, 2007, for a brief history of the subject and discussion of possible neurogenesis in other brain regions.

In essence, adult neurogenesis can be thought of as a “slight return” to the developmental neurogenesis and neuronal migration originating within the subventricular region and giving rise to the patterning of the cortical layers. Many of the same processes are present: regulated division of a stem cell population, programmed cell fate determination, cellular migration, survival/cell death decisions, and full maturation into functional neurons. In the adult rodent dentate gyrus, maturing neurons move into the granule cell layer from its boundary with the hilus and begin to produce axonal (mossy fiber) and dendritic projections. The result, within a timescale of days to weeks, is that these cells can become incorporated into the hippocampal trisynaptic circuitry so extensively studied in the context of learning and memory. The adoption of transgenic labeling and imaging techniques has greatly facilitated the observation and timing of this process in rodents.

In their current paper, Manganas and colleagues began with the assumption that neural precursor cells would possess a unique molecular fingerprint that would allow their identification within the living brain. They used proton nuclear resonance spectroscopy in the identification stage—profiling purified neural progenitor cells alongside mature neurons, oligodendrocytes, and astrocytes. A peak, designated “1.28ppm,” was identified as specific to the progenitor population. This was confirmed by a variety of approaches including pinpointing its enrichment in nestin-expressing cells (nestin being a marker for early neuronal differentiation events), observing its upregulation after stimuli known to increase neurogenesis and showing it decreased as cell differentiation progressed.

Small animal magnetic resonance imaging (MRI) was then employed to see if this biomarker was detectable in the living rat brain, not forgetting that the target cells are only likely to be a small percentage of the total cells in the hippocampus. It was, but only after a new signal-to-noise ratio processing algorithm—“singular value decomposition”—was applied to the raw imaging data. This led directly on to the examination of human subjects in medical MRI scanners. Again, using the more advanced imaging processing algorithm, 1.28ppm was detectable in the human hippocampus. The levels of 1.28ppm were relatively constant over the medium term for any individual, but when a wider sweep of the population was studied it became very clear that, just as in rodents, there is a steep decline in new neuron production as a function of aging. Looking at their graph I can see that my eldest daughter has 10 times the levels of neurogenesis that I do, which is a sobering fact—but one which, apparently, I may not remember tomorrow!

Finally, it is worth highlighting the potential origin of the 1.28ppm signal. The authors conclude that it is most likely the result of a pool of saturated or monounsaturated fatty acids or related molecules. Its specificity to the precursor population may imply either particular membrane composition, an increase in fatty acid-based secondary signaling molecules or altered energy metabolism.

The link between altered neurogenesis and human disease is tenuous only inasmuch as it has never, until now, been directly measurable in order to make correlations with pathology. In my opinion, the current state of the field is moderately suggestive that schizophrenia and major depression may be connected with a reduced level of hippocampal neurogenesis (Reif et al., 2007; Toro and Deakin, 2007). The administration of antipsychotic, mood-stabilizing, and antidepressant drugs in animal models all seem to have a pronounced effect on the generation of new neurons (see citations below). Admittedly, neurogenesis seems a particularly labile and sensitive process, and so results have to be interpreted critically, particularly for those experimental paradigms, such as eliciting seizures, which may not bear a strong resemblance to steady-state physiology. However, here is a selection of reviews that will give the reader a taste of adult neurogenesis in the context of disease: Lie et al., 2004, a general review of neurogenesis and disease; Reif et al., 2007, for evidence for neurogenesis deficits in schizophrenia; Drew and Hen, 2007, for neurogenesis deficits in depression and potential neurogenesis-based therapies; Sahay and Hen, 2007, an excellent review on neurogenesis and depression; and Toro and Deakin, 2007, for schizophrenia and neurogenesis and using adult neurogenesis to investigate developmental neurogenesis.

Genetics is not far behind the cell biological studies. Mapping the loci behind mouse strain differences in neurogenesis levels is ongoing and a number of mouse knockout or knockdown lines have abnormal neurogenesis. Of these, mice with reduced Npas3 (Pieper et al., 2005) and Disc1 (Duan et al., 2007) expression are particularly notable because these two genes were originally discovered through their chromosomal disruption in humans with psychiatric illness.

The study by Manganas et al. has the potential to allow future researchers to phenotype after genetic stratification or genotype after (endo-)phenotype stratification. It will also allow drug action time course and responsiveness to be assessed, including answering the question of whether SSRI response lag in depression is correlated with neurogenesis. Perhaps the currently rather messy field of trying to link particular animal learning paradigms with neurogenesis will also benefit from the live recordings now possible, and this may highlight particular subregions along the septo-temporal axis of the hippocampus linked with specific behaviors and stressors. Finally, the chemical composition of 1.28ppm is likely to stimulate research into the (therapeutic?) role of lipids in neuronal precursor cell biology in the normal and diseased states.

References:

Drew MR, Hen R (2007) Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol Disord Drug Targets 6:205-218. Abstract

Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146-1158. Abstract

Ehninger D, Kempermann G (2007) Neurogenesis in the adult hippocampus. Cell Tissue Res. Abstract

Elder GA, De Gasperi R, Gama Sosa MA (2006) Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 73:931-940. Abstract

Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481-488. Abstract

Grote HE, Hannan AJ (2007) Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 34:533-545. Abstract

Lie DC, Song H, Colamarino SA, Ming GL, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399-421. Abstract

Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, Henn F, Benveniste H, Djuric PM, Enikolopov G, Maletic-Savatic M (2007) Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318:980-985. Abstract

Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, Reece-Fincanon S, Dudley CA, Richardson JA, Brat DJ, McKnight SL (2005) The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A 102:14052-14057. Abstract

Reif A, Schmitt A, Fritzen S, Lesch KP (2007) Neurogenesis and schizophrenia: dividing neurons in a divided mind? Eur Arch Psychiatry Clin Neurosci 257:290-299. Abstract

Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110-1115. Abstract

Toro CT, Deakin JF (2007) Adult neurogenesis and schizophrenia: a window on abnormal early brain development? Schizophr Res 90:1-14. Abstract

von Bohlen Und Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409-420. Abstract

View all comments by Ben Pickard

Comments on Related News


Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Anil Malhotra, SRF Advisor
Submitted 21 November 2005
Posted 21 November 2005

The relationship between DISC1 and neuropsychiatric disorders, including schizophrenia, schizoaffective disorder, and bipolar disorder, has now been observed in several studies. Moreover, a number of studies have demonstrated that DISC1 appears to impact neurocognitive function. Nevertheless, the molecular mechanisms by which DISC1 could contribute to impaired CNS function are unclear, and these two papers shed light on this critical issue.

Millar et al. (2005) have followed the same strategy that they so successfully utilized in their initial DISC1 studies, identifying a translocation that associated with a psychotic illness. In contrast to DISC1, in which a pedigree was identified with a number of translocation carriers, this manuscript is based upon the identification of a single translocation carrier, who appears to manifest classic signs of schizophrenia, without evidence of mood dysregulation. Two genes are disrupted by this translocation: cadherin 8 and phosphodiesterase 4B (PDE4B). The researchers' elegant set of experiments provides compelling biological evidence that PDE4B interacts with DISC1 and suggests a mechanism mediated by cAMP for DISC1/PDE4B effects on basic molecular processes underlying learning, memory, and perhaps psychosis. It remains possible that PDE4B (and DISC1) are proteins fundamentally involved in cognitive processes, and that the observed relationship to psychotic illnesses represents a final common pathway of neurocognitive impairment. This would be consistent with data from our group (Lencz et al., in press) demonstrating that verbal memory impairment specifically predicts onset of psychosis in at-risk subjects. Similarly, Burdick et al. (2005) found that our DISC1 risk genotypes (Hodgkinson et al., 2004) were associated with impaired verbal working memory. Finally, Callicott et al. (2005) found that a DISC1 risk SNP, Ser704Cys, predicted hippocampal dysfunction, an SNP which we (DeRosse et al., unpublished data) have also found to link with the primary psychotic symptoms (persecutory delusions) manifested by the patient in the Millar et al. study. This body of evidence supports the notion that these proteins play fundamental roles in the key clinical manifestations of schizophrenia.

Kamiya et al. (2005) provide another potential mechanism for these effects, suggesting that a DISC1 mutation may disrupt cerebral cortical development, hinting that studies examining the role of DISC1 genotypes on brain structure and function in the at-risk schizophrenia pediatric patients may be fruitful.

Taken together, these papers add considerable new data suggesting that DISC1 plays a key role in the etiology of schizophrenia, and places DISC1 at the forefront of the rapidly growing body of schizophrenia candidate genes.

References:
Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK. DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005; 16(12):1399-1402. Abstract

Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102(24): 8627-8632. Abstract

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in Schizophrenia (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75:862-872. Abstract

Lencz T, Smith CW, McLaughlin D, Auther A, Nakayama E, Hovey L, Cornblatt BA. Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry (in press).

View all comments by Anil Malhotra

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Angus Nairn
Submitted 29 December 2005
Posted 31 December 2005
  I recommend the Primary Papers

This study describes an interesting genetic link between PDE4B (phosphodiesterase 4B) and schizophrenia that may be related to a physical interaction with DISC1 (disrupted in schizophrenia 1), another gene associated with the psychiatric disorder. The study is highly suggestive of a role for the PDE4B/DISC1 complex in schizophrenia. However, the mechanistic model suggested by the authors whereby DISC1 sequesters PDE4B in an inactive state seems overly speculative, given the results presented in this paper and in prior studies that have examined the regulation of PDE4B by phosphorylation in the absence of DISC1.

View all comments by Angus Nairn

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Patricia Estani
Submitted 2 January 2006
Posted 2 January 2006
  I recommend the Primary Papers

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Ali Mohammad Foroughmand
Submitted 16 December 2006
Posted 16 December 2006
  I recommend the Primary Papers

Related News: DISC1 Delivers—Genetic, Molecular Studies Link Protein to Axonal Transport

Comment by:  Akira Sawa, SRF Advisor
Submitted 12 January 2007
Posted 12 January 2007

Although DISC1 is multifunctional, its role for neurite outgrowth has been substantially characterized for the past couple of years (Ozeki et al., 2003; Miyoshi et al., 2003; Kamiya et al., 2006). These studies indicated that DISC1 is involved in neurite outgrowth by more than one mechanism, such as interactions with NUDEL/NDEL1 and FEZ1.

These two papers from Kaibuchi’s lab provide further understanding of how DISC1 is involved in neuronal outgrowth. Kaibuchi’s group identified kinesin heavy chain of kinesin-1 as a novel interactor of DISC1. In their papers, a novel role for DISC1, to link kinesin-1 (microtubule-dependent and plus-end directed motor) to several cellular molecules, including NUDEL, LIS1, 14-3-3, and Grb2, is reported. DISC1 and kinesin-1 are, therefore, responsible to sort Grb2 to the distal part of axons where Grb2 functions as an adaptor and plays a role in NT-3-induced phosphorylation of ERK1/2. This mechanism well explains our previous work, led by Ryota Hashimoto, reporting that knockdown of DISC1 expression results in decreased levels of phosphorylation of ERK1/2 and Akt in primary cortical neurons (Hashimoto et al., 2006).

The interaction of DISC1 and kinesin-1 may also be interesting from the perspective of psychiatric genetics. First, the mechanism proposed in one of the papers (Taya et al., 2007) supports the notion that the C-terminal truncated DISC1 fragment—that occurs due to the balanced translocation in an extended Scottish family—functions as a dominant-negative. Second, the domain of DISC1 responsible for kinesin-1 is overlapped with the haplotype block region(s) that are positive in more than one association study of DISC1 and major mental illnesses.

View all comments by Akira Sawa

Related News: DISC1 Delivers—Genetic, Molecular Studies Link Protein to Axonal Transport

Comment by:  Luiz Miguel Camargo (Disclosure)
Submitted 13 January 2007
Posted 13 January 2007

Two recent back-to-back papers, published this month in Journal of Neuroscience, highlight the value of protein-protein interactions in determining the biological role of a key schizophrenia risk factor, DISC1, in processes that are important for the proper development of neurons.

Key questions need to be addressed once having established a set of interactors for a given protein. First, where do these proteins interact on the target molecule? Second, do these interactions take place at the same time (i.e., do they form a complex)? Third, in what context do these interactions occur (temporal, tissue/cell compartment, signaling), and, fourth, are the biological processes of the interacting molecules affected/regulated by the protein of interest? The Kaibuchi lab, as exemplified in the works by Taya et al. and Shinoda et al., elegantly address some of these questions in the context of DISC1 interactions with Grb2, Nudel (NDEL1), 14-3-3ε, and kinesin-1. The key findings of these papers are as follows:

1. Identification of the interaction sites, or more importantly, which part of DISC1 is involved in particular processes, for example, that axon elongation is dependent on the N-terminal, but not the C-terminal portion of DISC1. This suggests that the DISC1 role in axon elongation is mediated by interactions with the N-terminal portion of DISC1 that could be competed for by the truncated protein in a dominant negative fashion (Camargo et al., 2007).

2. Although a protein may have many interacting partners, such as DISC1, these interactions may not occur at the same time. For example, DISC1 is able to form a ternary complex with kinesin-1 and NDEL1 or with kinesin-1 and Grb2. However, a ternary complex of DISC1-Grb2-NDEL1 is not possible as Grb2 and NDEL1 may be competing for the same interaction site on DISC1.

3. Protein interactions may occur in certain cellular compartments, in the case of DISC1, the cell body and the distal part of axons.

4. Neurotrophin-induced axon elongation requires DISC1.

These papers confirm some of the hypotheses raised by the interactions that we have recently derived for DISC1 and some of its interacting partners (see Camargo et al., 2007). From the DISC1 interactome, we concluded that DISC1 may affect key intracellular transport mechanisms, such as those regulated by kinesins, and that DISC1 may be downstream of neurotrophin receptors, via its interaction with SH3BP5, an adaptor protein, which we found to interact with SOS1, a guanine exchange factor that binds Grb2 and responds to signaling of neurotrophin receptors. These observations have been validated by Taya et al. and Shinoda et al. and demonstrate the value of the DISC1 interactome in understanding the role of DISC1, and as a valuable resource to the wider community.

The molecular function of DISC1, as defined by its structure, still remains elusive, requiring a more dedicated effort on this front. The good news is that, via its protein-protein interactions, significant progress on the role of DISC1 in key biological processes has been achieved, as illustrated by the work of different labs (Brandon et. al., 2004; Millar et al., 2005; Kamiya et al., 2005; and now by Shinoda et al. and Taya et al.).

View all comments by Luiz Miguel Camargo

Related News: DISC1 Fragment Ties Schizophrenia-like Symptoms to Development in Mice

Comment by:  John Roder
Submitted 30 November 2007
Posted 30 November 2007

Some observations on the new report by Li and colleagues: this work is the first to map subregions of DISC1 and to show that a region that binds Nudel and LIS1 is important in generating schizophrenia-like perturbations in vivo. The authors express DISC1 C-terminus in mice, which interacts with Nudel and LIS1. They showed less native mouse DISC1 associations with Nudel mouse following gene induction. This suggests a dominant-negative mechanism.

No data was shown on native DISC1 levels following induction. Work from the Sawa lab shows that if murine DISC1 levels are reduced in non-engineered mice using RNAi, severe perturbations in development of nervous system are seen (Kamiya et al., 2005); however, behavior was not measured in this study. Severe perturbations would be expected based on the neonatal ventral hippocampal lesion model. In this latter model early brain lesions lead to later impairments in PPI and other behaviors consistent with schizophrenic-like behavior.

They use a promoter only expressed in the forebrain, so it is puzzling they see expression in the cerebellum. Expressed DISC1 bound to endogenous mouse Nudel and LIS1, presumably exerting a dominant-negative effect. Induction of the C-terminus DISC1 at day 7, but not in the adult, led to deficits in working memory, the forced swim test, and sociability. It would have been reassuring if these tasks were validated using antipsychotics and antidepressants. It is not clear in this study why the female C57 was used as a standard opponent mouse, and what genders of DISC1 mice have been used. Even though young C57 females (6 weeks old) were used as neutral partners, the data might be interpreted also as impaired sexual motivation in DISC1-Tg-Tm7 mice.

The authors made an attempt to translate their mouse data (low sociability) into a human population and found an association between DISC1 haplotypes and social impairments in a Finnish population (n = 232 samples), which supports a DISC1 role in social behavior, one of schizophrenia's symptoms. It would be useful to distinguish deficits in social interactions and impaired sexual behavior.

Deficits in working memory are also an important schizophrenia endophenotype, and it would be interesting to measure how specific the cognitive deficit is in DISC1-Tg-Tm-7 mice, estimating associative memory in classical fear conditioning, for example.

Induction of the transgene early in development to day 7 resulted in small changes in dendritic complexity in granule cells in the dentate gyrus. It is surprising larger changes were not observed. The role of DISC1 in the adult self-renewing progenitor cells in the dentate switches, so that DISC1 acts as a brake for dendritic complexity and migration (Duan et al., 2007). Thus, reductions in DISC1 in the adult dentate gyrus granule cells lead to enhanced dendrite growth/complexity.

In the adult, DISC1 was shown to interact with Nudel in controlling adult neurogenesis and development. It is of interest that in the Li et al. paper the transgene also perturbs native DISC1 binding to Nudel at day 7 but not adult. Synaptic transmission was reduced in CA1. It would have been nice to see a recording from dentate granule cells in which changes in dendritic complexity were found.

References:

Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross CA, Hatten ME, Nakajima K, Sawa A. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol. 2005 Dec 1;7(12):1167-78. Abstract

Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007 Sep 21;130(6):1146-58. Abstract

View all comments by John Roder

Related News: DISC1 Fragment Ties Schizophrenia-like Symptoms to Development in Mice

Comment by:  Akira Sawa, SRF Advisor
Submitted 3 December 2007
Posted 3 December 2007

DISC1 may be a promising entry point to explore important disease pathways for schizophrenia and related mental conditions; thus, animal models that can provide us with insights into the pathways involving DISC1 may be helpful. In this sense, the new animal model reported by Li et al. (Silva and Cannon’s group at UCLA) has great significance in this field.

They made mice expressing a short domain of DISC1 that may block interaction of DISC1 with a set of protein interactors, including NUDEL/NDEL1 and LIS1. This approach, if the domain is much shorter, will be an important methodology in exploring the disease pathways based on protein interactions. Although the manuscript is excellent, and appropriate as the first report, the domain expressed in the transgenic mice can interact with more than 30-40 proteins, and the phenotypes that the authors observed might not be attributable to the disturbance of protein interactions of DISC1 and NUDEL or LIS1.

Now we have at least five different types of animal models for DISC1, all of which have unique advantages and disadvantages: 1) mice with a spontaneous mutation in an exon, which seem to lack some, but not all, DISC1 isoforms, from Gogos’s lab (see Koike et al., 2006; Ishizuka et al., 2007); 2) mice with mutations induced by a mutagen from Roder’s lab (Clapcote et al., 2007); 3) transgenic mice that express a dominant-negative mutant DISC1 from Sawa’s lab (Hikida et al., 2007); 4) transgenic mice that express a dominant-negative mutant DISC1 in an inducible manner from Pletkinov’s lab (Pletnikov et al., 2007); and 5) the mice from Silva’s and Cannon’s labs.

It is impossible to reach a firm conclusion on how the Scottish mutation of the DISC1 gene leads to molecular dysfunction until the data from autopsied brains of patients in the Scottish family become available. Millar and colleagues have published data of DISC1 in lymphoblastoid cells from the family members and propose an intriguing suggestion of how DISC1 is potentially disturbed in the pedigree (Millar et al., 2005); however, this remains in the realm of hypothesis/suggestion from peripheral cells. Thus, it is very important to compare the various types of DISC1 animal models in approaching how disturbance of DISC1 in brain leads to the pathophysiology of schizophrenia and related disorders.

References:

Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3693-7. Abstract

Ishizuka K, Chen J, Taya S, Li W, Millar JK, Xu Y, Clapcote SJ, Hookway C, Morita M, Kamiya A, Tomoda T, Lipska BK, Roder JC, Pletnikov M, Porteous D, Silva AJ, Cannon TD, Kaibuchi K, Brandon NJ, Weinberger DR, Sawa A. Evidence that many of the DISC1 isoforms in C57BL/6J mice are also expressed in 129S6/SvEv mice. Mol Psychiatry. 2007 Oct ;12(10):897-9. Abstract

Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron. 2007 May 3;54(3):387-402. Abstract

Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andradé M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14501-6. Abstract

Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry. 2007 Sep 11; Abstract

Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science. 2005 Nov 18;310(5751):1187-91. Abstract

View all comments by Akira Sawa

Related News: DISC1 Fragment Ties Schizophrenia-like Symptoms to Development in Mice

Comment by:  David J. Porteous, SRF Advisor
Submitted 21 December 2007
Posted 22 December 2007

On the DISC1 bus
You wait ages for a bus, then a string of them come one behind the other. First, Koike et al. (2006) reported that the 129 strain of mouse had a small detection of the DISC1 gene and this was associated with a deficit on a learning task. The interpretation of this observation was somewhat complicated by the subsequent recognition that the majority, if not all, major DISC1 isoforms are unaffected by the deletion, but this needs further work (Ishizuka et al., 2007). Then, Clapcote et al. (2007) provided a very detailed characterization of two independent ENU-induced mouse missense mutations of DISC1, showing selective brain shrinkage and marked behavioral abnormalities that in one mutant were schizophrenia-like, the other more akin to mood disorder. Importantly, these phenotypes could be differentially rescued by antipsychotics or antidepressants. The main finger pointed to disruption of the interaction with PDE4 to misregulate cAMP signaling (Millar et al., 2005; Murdoch et al., 2007).

Then, back-to-back came two variants of DISC1 transgenic models from Johns Hopkins University (Pletnikov et al., 2007; Hikida et al., 2007) (see also SCZ Forum). Both Pletnikov and Hikida overexpressed a truncated form of DISC1 under the control of the CaMKII promoter (in Pletnikov’s case with an inducible CaMKU promoter). Both groups reported brain structural and behavioral abnormalities that aligned rather nicely with the earlier work of Clapcote et al. (2007). Pletnikov et al. showed that neurite outgrowth was attenuated in primary cortical neurons. They also showed that endogenous DISC1, LIS1, and SNAP25, but not NDEL1 or PSD-95, was reduced in mouse forebrain.

Now, Li et al. (2007) introduce yet another transgenic DISC1 model mouse, this time overexpressing a carboxy tail fragment of DISC1, so the opposite end of the DISC1 molecule from that overexpressed by Pletnikov and by Hikida. Intriguingly, Li et al. (as with all the preceding models) report significant behavioral differences for wild-type littermates. The point of added interest and significance here is that by using an inducible transgenic construct, they could elicit behavioral abnormalities if carboxy terminal DISC1 was expressed on postnatal day 7 only, but not in adult life. What are we to make of this and how do the models align? Li et al. interpret their results to suggest that DISC1 plays a crucial role, through NDEL1 and LIS1, in postnatal (but not adult) brain development. This study obviously raises some key questions. What is the developmental window of DISC1 effect? How can the lack of effect in the adult be reconciled with the rather striking effect on neurogenesis consequent upon downregulation of DISC1 in the adult mouse brain reported by Duan et al. (2007). And if overexpressing 5’ (Hikida, Pletnikov) or 3’ constructs (Li) can elicit similar phenotypes as seen in ENU-induced missense variants within exon 2 (Clapcote), can we come up with a unifying explanation? Perhaps not yet, but these various mouse models certainly emphasize the value of a multi-pronged mouse modeling approach. Combinations of “null,” transgenic, inducible, and missense mutants will help dissect the underlying processes. These studies also suggest that a variety of DISC1 variants in humans might elicit rather similar and also subtly different phenotypes. Indeed, Li et al. try to link their findings on the mouse to human studies, but here I feel there is cause for caution. The genetic association referred to maps to a haplotype in a quite distinct region of DISC1 and the direct or indirect functional effect of the haplotype is far from clear. It is, however, conceptually unlikely that this risk haplotype has a specific or restricted effect on Nudel and/or Lis1 binding. The corollary between a genetic association for a selected, but poorly defined sub-phenotype of schizophrenia with a poorly defined behavioral phenotype in the mouse may be a corollary too far too soon. Finally, whereas the focus of attention by Li, Pletnikov, and Hikida has been on the well-established/neurodevelopmental role of NDEL1 (and LIS1), the potential role of PDE4B both in neurosignaling (related to behavior, learning, and memory) and possibly also neurodevelopment should not be overlooked. In this regard it is noteworthy that PDE4 interacts both with the head and the carboxy tail domain of DISC1 (Hannah et al., 2007) and this most likely contributes to the phenotype in all the models described to date.

References:

Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron. 2007 May 3;54(3):387-402. Abstract

Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andradé M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14501-6. Abstract

Ishizuka K, Chen J, Taya S, Li W, Millar JK, Xu Y, Clapcote SJ, Hookway C, Morita M, Kamiya A, Tomoda T, Lipska BK, Roder JC, Pletnikov M, Porteous D, Silva AJ, Cannon TD, Kaibuchi K, Brandon NJ, Weinberger DR, Sawa A. Evidence that many of the DISC1 isoforms in C57BL/6J mice are also expressed in 129S6/SvEv mice. Mol Psychiatry. 2007 Oct 1;12(10):897-9. Abstract

Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3693-7. Abstract

Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D, Hennah W, Peltonen L, Lönnqvist J, Huttunen MO, Kaprio J, Trachtenberg JT, Silva AJ, Cannon TD. Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18280-5. Abstract

Millar JK, James R, Christie S, Porteous DJ. Disrupted in schizophrenia 1 (DISC1): subcellular targeting and induction of ring mitochondria. Mol Cell Neurosci. 2005 Dec 1;30(4):477-84. Abstract

Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007 Sep 21;130(6):1146-58. Abstract

Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E, Porteous DJ, Millar JK, Houslay MD. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci. 2007 Aug 29;27(35):9513-24. Abstract

Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry. 2007 Sep 11; [Epub ahead of print] Abstract

View all comments by David J. Porteous

Related News: DISC1 Is Critical for Axon Terminals in Adult Hippocampus

Comment by:  Jill MorrisKate Meyer
Submitted 3 October 2008
Posted 6 October 2008
  I recommend the Primary Papers

The elegant research by Faulkner and colleagues, along with their previous work (Duan et al., 2007), clearly demonstrates a role for DISC1 in regulating the timing of neuronal development in the adult brain. The loss of Disc1 in adult-born dentate granule cells resulted in aberrant axonal targeting and accelerated mossy fiber maturation. Although it is hypothesized that the hippocampus is involved in the pathophysiology of schizophrenia, the cellular and molecular underpinnings of hippocampal dysfunction are unknown. However, it is becoming apparent that Disc1 is a regulator of granule cell integration and maturation in the adult hippocampus. The function of adult-born granule cells and the contribution they make to hippocampal function is, of course, yet to be fully elucidated. In the context of schizophrenia, though, it may be that abnormal incorporation of newborn granule cells into the hippocampal network—perhaps caused by mutations in key genes such as Disc1—is a post-developmental trigger which leads to the onset of disease symptoms.

The finding that Disc1 regulates mossy fiber targeting and synapse formation is also intriguing on a more general level. There is much research suggesting that schizophrenia is a disease of the synapse, likely involving several neurotransmitter systems. A role for Disc1 in axon outgrowth and synapse formation would certainly be a means through which Disc1 disruption could affect the hippocampal trisynaptic circuit. Next, we as researchers will have to determine the molecular mechanisms by which Disc1 is regulating neuronal development and axonal targeting. Based on the work in the developing and adult brain, Disc1 has multiple cellular roles involving a long list of interactors. The challenge is determining which Disc1 functions and pathways are relevant to the schizophrenia phenotype.

References:

Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell. 2007 Sep 21;130(6):1146-58. Abstract

View all comments by Jill Morris
View all comments by Kate Meyer

Related News: DISC1: A Matter of Life or Death for Neural Progenitors

Comment by:  Khaled Rahman
Submitted 26 March 2009
Posted 26 March 2009

Mao and colleagues present an impressive body of work implicating GSK3β/β-catenin signaling in the function of Disc1. However, several key experimental controls are missing that detract from the impact of their study, and it is unclear whether this function of Disc1 among its many others is the critical link between the t(1;11) translocation and psychopathology in the Scottish family.

The results of Mao et al. suggest that acute knockdown of Disc1 in embryonic brain causes premature exit from the proliferative cell cycle and premature differentiation into neurons. In fact, they observe fewer GFP+ cells in the VZ/SVZ and greater GFP+ cells within the cortical plate. This is in contrast to the study by Kamiya et al. (2005), in which they find that knocking down Disc1 caused greater retention of cells in the VZ/SVZ and fewer in the cortical plate, suggesting retarded migration. Although the timing of electroporation (E13 vs. E14.5) and examination (E15 vs. P2) differed between the two studies, these results are not easily reconciled.

The authors also suggest that they can rescue the deficits in proliferation by overexpressing human wild-type DISC1, stabilizing β-catenin expression, or inhibiting GSK3β activity, and thus conclude that Disc1 is acting through this pathway. This conclusion, however, rests on an error in logic. If increasing X causes an increase in Y, and decreasing Z causes a decrease in Y, this does not mean that X and Z are operating via the same mechanism. In fact, overexpressing WT-DISC1, stabilizing β-catenin, or inhibiting GSK3β activity all increase proliferation in control cells. Thus, the fact that these manipulations also work in progenitors with Disc1 silenced only tells us that these effects are independent or downstream of Disc1. What are needed are studies that show a differential sensitivity of Disc1-silenced cells to manipulations of β-catenin or GSK3β. In other words, is there a shift in the dose response curves? This is what is to be expected given that Mao et al. show changes in β-catenin levels and changes in the phosphorylation of GSK3β substrates in Disc1 silenced cells.

Furthermore, it is surprising that a restricted silencing of Disc1 in the adult dentate gyrus produces changes in affective behaviors, when total ablation of dentate neurogenesis in the adult produces little effects on depression-related behaviors (Santarelli et al., 2003; Airen et al., 2007). The fact that inhibiting GSK3β increases proliferation in both control and Disc1 knockdown animals to a similar degree suggests that the “rescue” of any behavioral deficits is independent of the drug’s effects on proliferation. Correlating measures of proliferation with behavioral performance would help address this issue.

How this study will lead to new or improved therapeutic interventions is also an open question. Lithium is well known for its mood-stabilizing properties, and this study may point to better, more efficient ways to address these symptoms. However, it is also known that lithium does little for, if not worsens, cognitive symptoms in patients (Pachet and Wisniewski, 2003), and it is this symptom domain that is in dire need of drug development.

It is also important to keep in mind that acute silencing of Disc1 in a restricted set of cells will not necessarily recapitulate the pathogenetic process of a disease-associated mutation. It remains to be seen if similar results are obtained in animal models of the Disc1 mutation (Clapcote et al., 2007; Hikida et al., 2007; Li et al., 2007).

References:

Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross CA, Hatten ME, Nakajima K, Sawa A. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol. 2005 Dec 1;7(12):1167-78. Abstract

Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003). Abstract

Airan, R.D. et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317, 819-23 (2007). Abstract

Pachet AK, Wisniewski AM. The effects of lithium on cognition: an updated review. Psychopharmacology (Berl). 2003 Nov;170(3):225-34. Review. Abstract

Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, et al. (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54: 387–402. Abstract

Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, et al. (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A 104: 14501–14506. Abstract

Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, et al. (2007) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci U S A 104: 18280–18285. Abstract

View all comments by Khaled Rahman

Related News: DISC1: A Matter of Life or Death for Neural Progenitors

Comment by:  Simon Lovestone
Submitted 27 March 2009
Posted 27 March 2009

This is an intriguing paper that builds on a growing body of evidence implicating wnt regulation of GSK3 signaling in psychotic illness (Lovestone et al., 2007).

It is interesting that the authors report that binding of DISC1 to GSK3 results in no change in the inhibitory Ser9 phosphorylation site of GSK3 but a change in Y216 activation site and that this resulted in effects on some but not all GSK3 substrates. This poses a challenge both in terms of understanding the role of GSK3 signaling in schizophrenia and other psychotic disorders and in drug discovery.

The authors cite some of the other evidence for regulation of GSK3 signaling in psychosis, including, for example, the evidence for a role of AKT signaling alteration in schizophrenia and lithium, an inhibitor of GSK3, as a treatment for bipolar disorder. But in both cases, AKT (Cross et al., 1995) and lithium (Jope, 2003), the effect on GSK3 is predominantly via Ser9 phosphorylation and not via Y216. The unstated implication is at least two, possibly three, mechanisms for regulation of GSK3 are all involved in psychotic illness—the auto-phosphorylation at Y216, the exogenous signal transduction regulated Ser9 site inhibition and, if the association of schizophrenia with the wnt inhibitor DKK4 we reported is true (Proitsi et al., 2008), also via the wnt signaling effects on disruption of the macromolecular complex that brings GSK3 together with β-catenin. On the one hand, this might be taken as positive evidence of a role for GSK3 in psychosis—all of its regulatory mechanisms have been implicated; therefore, the case is stronger. On the other hand, GSK3 lies at the intersection point of very many signaling pathways and so is likely to be implicated in many disorders (as it is), and the fact that in cellular and animal models related to psychosis there is no consistent effect on the enzyme is troublesome.

From a drug discovery perspective, those with GSK3 inhibitors in the pipeline will be watching this space carefully. However, it is worth noting that Mao et al. find very selective effects of DISC1 on GSK3 substrates. Despite convincing evidence of an increase in Y216 phosphorylation, which one would expect to increase activity of GSK3 against all substrates, the authors find no evidence of effects on phosphorylation of the GSK3 substrates Ngn2 or C/EBPα. This is somewhat puzzling and merits further attention, especially as in vitro direct binding of a DISC1 fragment to GSK3 inhibited the action of GSK3 on a range of substrates. Might there be more to the direct interaction of DISC1 with GSK3 than a regulation of Y216 autophosphorylation and activation? If, however, GSK3 regulation turns out to be part of the mechanism of schizophrenia or bipolar disorder, then identifying which of the substrates and which of the many activities of GSK3, including on plasticity and hence cognition (Peineau et al., 2007; Hooper et al., 2007), are important in disease will become the critical task.

References:

Lovestone S, Killick R, Di Forti M, Murray R. Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci. 2007 Apr 1 ; 30(4):142-9. Abstract

Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature . 1995 Dec 21-28 ; 378(6559):785-9. Abstract

Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci . 2003 Sep 1 ; 24(9):441-3. Abstract

Proitsi P, Li T, Hamilton G, Di Forti M, Collier D, Killick R, Chen R, Sham P, Murray R, Powell J, Lovestone S. Positional pathway screen of wnt signaling genes in schizophrenia: association with DKK4. Biol Psychiatry . 2008 Jan 1 ; 63(1):13-6. Abstract

Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron . 2007 Mar 1 ; 53(5):703-17. Abstract

Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci . 2007 Jan 1 ; 25(1):81-6. Abstract

View all comments by Simon Lovestone

Related News: DISC1: A Matter of Life or Death for Neural Progenitors

Comment by:  Nick Brandon (Disclosure)
Submitted 27 March 2009
Posted 30 March 2009
  I recommend the Primary Papers

Li-huei Tsai and colleagues have identified another pathway in which the candidate gene DISC1 looks to have a critical regulatory role, namely the wnt signaling pathway, in progenitor cell proliferation. In recent years we have seen that DISC1 has a vital role at the centrosome (Kamiya et al., 2005), in cAMP signaling (Millar et al., 2005), and in multiple steps of adult hippocampal neurogenesis (Duan et al., 2007). They have shown a pivotal role for DISC1 in neural progenitor cell proliferation through regulation of GSK3 signaling using a spectacular combination of cellular and in utero manipulations with shRNAs and GSK3 inhibitor compounds. These findings clearly implicate DISC1 in another “druggable” pathway but at this stage do not really identify new approach/targets, except perhaps to confirm that manipulating adult neurogenesis and the wnt pathway holds much potential hope for therapeutics. Perhaps understanding the mechanism of inhibition of GSK3 by DISC1 in more detail might reveal more novel approaches or encourage more innovative work around this pathway. In addition, I have read the other comment (by Rahman), and though I agree that this work still leaves many questions to be answered, the paper is much more significant and likely reconcilable with previous papers than appreciated. The commentary from Lovestone was very insightful and brings up additional gaps and issues with the present work. Additional experimentation I am sure will tease out more key facets of the DISC1-wnt interaction in the near future.

There are many avenues now to proceed with this work. In particular, from the DISC1-centric view, a GSK3 binding site on DISC1 overlaps with one of the critical core PDE4 binding site. Mao et al. show that residues 211 to 225 are a core part of a GSK3 binding site. Previously, Miles Houslay had shown very elegantly that residues 191-230 form a common binding site (known as common site 1) for both PDE4B and 4D families (Murdoch et al., 2007). It will be important to understand the relationship between GSK3 and PDE4 related signaling in reference to the activity of DISC1 starting at whether a trimolecular complex among DISC1-PDE4-GSK3 can form. Then it will be critical to understand the regulatory interplay among these molecules. For example, it is known that PKA can regulate GSK3 activity (Torii et al., 2008) and the interaction between DISC1 and PDE4, while both GSK3 and PKA can phosphorylate β-catenin (Taurin et al., 2006). The output of these relationships on progenitor proliferation will further deepen insights into the role of DISC1 complexes in neuronal processes. This type of situation is not really surprising for a molecule (DISC1) which has been shown to interact with >100 proteins (Camargo et al., 2007). The context of these interactions in both normal development and disease is likely to be critical to allow understanding of its complete functional repertoire.

Another area where these new findings need to be exploited is in the study of additional animal models. Though the two behavioral endpoint models used in the paper (amphetamine hyperactivity and forced swim test) provide a tantalizing glimpse of the behavioral importance of the complex, it would be critical to look in additional models relevant for schizophrenia and mood disorders. Furthermore, it will be very interesting to look at the effects of GSK3β inhibitors in some of the DISC1 animal models already available and to see if they can reverse all or a subset of reported behaviors. In reviewing a summary of the phenotypes available to date (Shen et al., 2008) there is clearly a number of lines which share the properties with mice injected with DISC1 shRNA into the dentate gyrus and would be of value to look at.

A very exciting paper which I am sure will drive additional research into understanding the role of DISC1 in psychiatry and hopefully encourage drug discovery efforts around this molecular pathway (Wang et al., 2008).

References:

1. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, Sawamura N, Park U, Kudo C, Okawa M, Ross CA, Hatten ME, Nakajima K, Sawa A. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol . 2005 Dec 1 ; 7(12):1167-78. Abstract

2. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science . 2005 Nov 18 ; 310(5751):1187-91. Abstract

3. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell . 2007 Sep 21 ; 130(6):1146-58. Abstract

4. Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E, Porteous DJ, Millar JK, Houslay MD. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci . 2007 Aug 29 ; 27(35):9513-24. Abstract

5. Torii K, Nishizawa K, Kawasaki A, Yamashita Y, Katada M, Ito M, Nishimoto I, Terashita K, Aiso S, Matsuoka M. Anti-apoptotic action of Wnt5a in dermal fibroblasts is mediated by the PKA signaling pathways. Cell Signal . 2008 Jul 1 ; 20(7):1256-66. Abstract

6. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem . 2006 Apr 14 ; 281(15):9971-6. Abstract

7. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ, Brandon NJ. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry . 2007 Jan 1 ; 12(1):74-86. Abstract

8. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, Chatzi C, He S, Mackie I, Brandon NJ, Marquis KL, Day M, Hurko O, McCaig CD, Riedel G, St Clair D. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci . 2008 Oct 22 ; 28(43):10893-904. Abstract

9. Wang Q, Jaaro-Peled H, Sawa A, Brandon NJ. How has DISC1 enabled drug discovery? Mol Cell Neurosci . 2008 Feb 1 ; 37(2):187-95. Abstract

View all comments by Nick Brandon

Related News: DISC1: A Matter of Life or Death for Neural Progenitors

Comment by:  Akira Sawa, SRF Advisor
Submitted 8 April 2009
Posted 8 April 2009

Mao and colleagues’ present outstanding work sheds light on a novel function of DISC1. Because DISC1 is a multifunctional protein, the addition of new functions is not surprising. Thus, for the past several years, the field has focused on how DISC1 can have distinct functions in different cell contexts (for example, progenitor cells vs. postmitotic neurons, or developing cortex vs. adult dentate gyrus). In addition to Mao and colleagues, I understand that several groups, including ours, have obtained preliminary, unpublished evidence that DISC1 regulates progenitor cell proliferation, at least in part via GSK3β. Thus, I am very supportive of this new observation.

If there might be a missing point in this paper, it is unclear whether suppression of GSK3β occurs in several different biological contexts in brain in vivo. In other words, it is uncertain whether DISC1’s actions on GSK3β are constitutive or context-dependent. How can we reconcile differential roles for DISC1 in progenitor cells in contrast to postmitotic neurons? We have already obtained a preliminary promising answer to this question, which is currently being validated very intensively. These two phenotypes (progenitor cell control and postmitotic migration) may compensate for each other in cortical development; thus, overall cortical pathology looks milder in adults, at least in our preliminary unpublished data using DISC1 knockout mice. We are not sure how this novel function of DISC1 may account for the pathology of Scottish cases. Although I have great respect for the Scottish pioneers of DISC1 study, such as St. Clair, Blackwood, and Muir (I believe that the St. Clair et al., 1990 Lancet paper is one of the best publications in psychiatry), now is the time to pay more and more attention to the question of the molecular pathway(s) involving DISC1 in general schizophrenia (see 2009 SRF roundtable discussion). Unlike the role of APP in Alzheimer’s disease, DISC1 is not a key biological target in general schizophrenia, instead being an entry point to explore much more important targets for schizophrenia. There may be no more need to stick to DISC1 itself in the unique Scottish cases in schizophrenia research. In sum, although there may still be key missing points in this study, I wish to congratulate the authors on their outstanding work.

References:

St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, Gosden C, Evans HJ. Association within a family of a balanced autosomal translocation with major mental illness. Lancet . 1990 Jul 7 ; 336(8706):13-6. Abstract

View all comments by Akira Sawa

Related News: DISC1 Players Gird For Adult Neurodevelopment

Comment by:  Kevin J. Mitchell
Submitted 8 October 2009
Posted 8 October 2009

The seminal identification of mutations in DISC1 associated with schizophrenia and other psychiatric disorders raises several obvious questions: what does the DISC1 protein normally do? What are its biochemical and cellular functions, and what processes are affected by its mutation? How do defects in these cellular processes ultimately lead to altered brain function and psychopathology? Which brain systems are affected and how? Similar questions could be asked for the growing number of other genes that have been implicated by the identification of putatively causal mutations, including NRG1, ERBB4, NRXN1, CNTNAP2, and many copy number variants. Finding the points of biochemical or phenotypic convergence for these proteins or mutations may be key to understanding how mutations in so many different genes can lead to a similar clinical phenotype and to suggesting points of common therapeutic intervention.

The papers by Kim et al. and Enomoto et al. add more detail to the complex picture of the biochemical interactions of DISC1 and its diverse cellular functions. The links with Akt and PTEN signaling are especially interesting, given the previous implication of these proteins in schizophrenia and autism. Akt, in particular, may provide a link between Nrg1/ErbB4 signaling and DISC1 intracellular functions.

These studies also reinforce the importance of DISC1 and its interacting partners in neurodevelopment, specifically in cell migration and axonal extension. In particular, they highlight the roles of these proteins in postnatal hippocampal development and adult hippocampal neurogenesis. They also raise the question of which extracellular signals and receptors regulate these processes through these signalling pathways. The Nrg1/ErbB4 pathway has already been implicated, but there are a multitude of other cell migration and axon guidance cues known to regulate hippocampal development, some of which, for example, semaphorins, signal through the PTEN pathway.

Whether or how disruptions in these developmental processes contribute to psychopathology also remains unclear. It seems likely that the effects of mutations in any of these genes will be highly pleiotropic and have effects in many brain systems. The reported pathology in schizophrenia is not restricted to hippocampus but extends to cortex, thalamus, cerebellum, and many other regions. Similarly, while the cognitive deficits receive a justifiably large amount of attention, given that they may have the most clinical impact, motor and sensory deficits are also a stable and consistent part of the syndrome that must be explained. Pleiotropic effects on prenatal and postnatal development, as well as on adult processes, may actually be the one common thread characterizing the genes so far implicated. These new papers represent the first steps in the kinds of detailed biological studies that will be required to make explanatory links from mutations, through biochemical and cellular functions, to effects on neuronal networks and ultimately psychopathology.

View all comments by Kevin J. Mitchell

Related News: DISC1 Players Gird For Adult Neurodevelopment

Comment by:  Peter PenzesMichael Cahill
Submitted 8 October 2009
Posted 8 October 2009

DISC1 disruption by chromosomal translocation cosegregates with several neuropsychiatric disorders, including schizophrenia (Blackwood et al., 2001; Millar et al., 2000). Recent attention has focused on the effects of DISC1 on the structure and function of the dentate gyrus, one of the few brain regions that exhibit neurogenesis throughout life. The downregulation of DISC1 has several deleterious effects on the dentate gyrus, including aberrant neuronal migration (Duan et al., 2007). However, the mechanisms through which DISC1 regulates the structure and function of the dentate gyrus remain unknown. The dentate gyrus and its output to the CA3 area, the mossy fiber, show several abnormalities in schizophrenia and other neuropsychiatric diseases (Kobayashi, 2009). Thus, understanding how a gene associated with neuropsychiatric disease, DISC1, mechanistically impacts the dentate gyrus is an important question with much clinical relevance.

The recent papers by Kim et al. and Enomoto et al. characterize an interaction between DISC1 and girdin (also known as KIAA1212), and reveal how girdin, and the interaction between DISC1 and girdin, impact axon development, dendritic development, and the proper positioning of newborn neurons in the dentate gyrus. Girdin normally stimulates the function of AKT (Anai et al., 2005), and Kim et al. show that DISC1 binds to girdin and inhibits its function. Thus, the loss of DISC1 leaves girdin unopposed, resulting in excessive AKT signaling. Indeed, the developmental defects in neurons lacking DISC1 can be rescued by pharmacologically blocking the activation of an AKT downstream target. However, as shown by Enomoto et al., the loss of girdin produces deleterious effects on neuronal morphology, suggesting that a proper balance of girdin function is crucial.

Collectively, these studies thoroughly characterize the interaction between DISC1 and girdin, and shed much light on the consequences of this interaction on neuronal morphology as well as on the positioning of neurons in the dentate gyrus. The role of girdin in the pathology of neuropsychiatric diseases is unknown, and remains an interesting question for the future. Characterizing the molecules that act up- or downstream of DISC1 remains an important area of investigation and could aid the development of pharmacological interventions in the future. It’s intriguing that DISC1 acting through girdin regulates the activity of AKT as AKT1 was previously identified as a schizophrenia risk gene (Emamian et al., 2004). This suggests a convergence of multiple schizophrenia-associated genes in a shared pathway, and thus it will be important to determine if the DISC1-girdin-AKT1 pathway is particularly vulnerable in neuropsychiatric disorders.

References:

Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet . 2001 Aug 1 ; 69(2):428-33. Abstract

Millar JK, Christie S, Semple CA, Porteous DJ. Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC1, a gene disrupted by a translocation segregating with schizophrenia. Genomics . 2000 Jul 1 ; 67(1):69-77. Abstract

Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell . 2007 Sep 21 ; 130(6):1146-58. Abstract

Kobayashi K. Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol Neurobiol . 2009 Feb 1 ; 39(1):24-36. Abstract

Anai M, Shojima N, Katagiri H, Ogihara T, Sakoda H, Onishi Y, Ono H, Fujishiro M, Fukushima Y, Horike N, Viana A, Kikuchi M, Noguchi N, Takahashi S, Takata K, Oka Y, Uchijima Y, Kurihara H, Asano T. A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J Biol Chem . 2005 May 6 ; 280(18):18525-35. Abstract

Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet . 2004 Feb 1 ; 36(2):131-7. Abstract

View all comments by Peter Penzes
View all comments by Michael Cahill